TB62747AFG,TB62747AFNG, TB62747AFNAG,TB62747BFNAG

16-Output Constant Current LED Driver

The TB62747 series is comprised of constant-current drivers designed for LEDs and LED panel displays.

The regulated current sources are designed to provide a constant current, which is adjustable through one external resistor.

The TB62747 series incorporates 16 channels of shift registers, latches, AND gates and constant-current outputs.

Fabricated using the Bi-CMOS process, the TB62747 series satisfies the system requirement of high-speed data transmission.

The TB62747 series is RoHS compatible

Features

- Power supply voltages: VDD $=3.3 \mathrm{~V}$ to 5.0 V
- 16-output built-in
- Output current setting range
: 1.5 to $35 \mathrm{~mA} @ \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VO}=0.4$ to 1.0 V
: 1.5 to $45 \mathrm{~mA} @ \mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4$ to 1.2 V
- Constant current output voltage: $\mathrm{Vo}=26 \mathrm{~V}$ (max)
- Current accuracy (@ REXT $=1.2 \mathrm{k} \Omega, \mathrm{VO}=0.4 \mathrm{~V}, \mathrm{VDD}=3.3 \mathrm{~V}, 5.0 \mathrm{~V}$)
: Between outputs: ± 1.5 \% (max)
: Between devices: ± 1.5 \% (max)
- Fast response of output current : $\mathrm{t}_{\mathrm{wOE}}(\mathrm{L})=100 \mathrm{~ns}(\mathrm{~min})$
- Control data format: serial-in, parallel-out
- Input signal voltage level: 3.3 V and 5 V CMOS interfaces (Schmitt trigger input)
- Serial data transfer rate: 25 MHz (max) @cascade connection
- Operation temperature range: $\mathrm{T}_{\mathrm{opr}}=-40$ to $85^{\circ} \mathrm{C}$
- Power on reset (POR)
- Package

$:$ AFG type	: SSOP24-P-300-1.00B
: AFNG type	: SSOP24-P-300-0.65A
: AFNAG type	: SSOP24-P-150-0.64
: BFNAG type	: SSOP24-P-150-0.64

Pin Assignment (top view)

Note1: Short circuiting an output pin to a power supply pin (VDD or VLED*), or short-circuiting the REXT pin to the GND pin will likely exceed the rating, which in turn may result in smoldering and/or permanent damage. Please keep this in mind when determining the wiring layout for the power supply and GND pins.
*VLED: LED power supply

Block Diagram

Truth Table

SCK	$\overline{\text { SLAT }}$	$\overline{\mathrm{OE}}$	SIN	$\overline{\text { OUT0 }} \ldots \overline{\text { OUT7 }}^{\ldots} \ldots \overline{\text { OUT15 }}$ *1	SOUT
\uparrow	H	L	Dn	Dn ... Dn - $7 \ldots$... $\mathrm{Dn}-15$	Dn - 15
\uparrow	L	L	Dn + 1	No Change	Dn - 14
\uparrow	H	L	Dn + 2	Dn + $2 \ldots .$. Dn - $5 \ldots \mathrm{Dn}-13$	Dn - 13
\downarrow	-*2	L	Dn + 3	Dn $+2 \ldots$ Dn - $5 \ldots .$. Dn - 13	Dn - 13
\downarrow	-*2	H	Dn +3	OFF	Dn - 13

Note1: When $\overline{\text { OUT0 }}$ to $\overline{\text { OUT15 }}$ output pins are set to " H " the respective output will be ON and when set to "L" the respective output will be OFF.
Note2: "-" is irrelevant to the truth table.

Timing Diagram

Note 1: The latch circuit is a leveled-latch circuit. Please exercise precaution as it is not triggered-latch circuit.
Note 2: Keep the SLAT pin is set to "L" to enable the latch circuit to hold data. In addition, when the SLAT pin is set to "H" the latch circuit does not hold data. The data will instead pass onto output.
When the $\overline{O E}$ pin is set to "L" the $\overline{\text { OUTO }}$ to $\overline{\text { OUT15 }}$ output pins will go ON and OFF in response to the data. In addition, when the $\overline{\mathrm{OE}}$ pin is set to "H" all the output pins will be forced OFF regardless of the data.

Pin Functions

Pin No		Pin Name	I/O	Function
AFG AFNG AFNAG	BFNAG			
1	7	GND	-	The ground pin.
2	8	SIN	I	The serial data input pin.
3	9	SCK	I	The serial data transfer clock input pin.
4	10	$\overline{\text { SLAT }}$	I	The latch signal input pin. Data is saved at L level.
5	11	$\overline{\text { OUTO }}$	0	A sink type constant current output pin.
6	12	$\overline{\text { OUT1 }}$	0	A sink type constant current output pin.
7	13	$\overline{\text { OUT2 }}$	0	A sink type constant current output pin.
8	14	$\overline{\text { OUT3 }}$	O	A sink type constant current output pin.
9	15	$\overline{\text { OUT4 }}$	0	A sink type constant current output pin.
10	16	$\overline{\text { OUT5 }}$	0	A sink type constant current output pin.
11	17	$\overline{\text { OUT6 }}$	0	A sink type constant current output pin.
12	18	$\overline{\text { OUT7 }}$	0	A sink type constant current output pin.
13	19	$\overline{\text { OUT8 }}$	0	A sink type constant current output pin.
14	20	$\overline{\text { OUT9 }}$	0	A sink type constant current output pin.
15	21	$\overline{\text { OUT10 }}$	0	A sink type constant current output pin.
16	22	$\overline{\text { OUT11 }}$	0	A sink type constant current output pin.
17	23	$\overline{\text { OUT12 }}$	0	A sink type constant current output pin.
18	24	$\overline{\text { OUT13 }}$	0	A sink type constant current output pin.
19	1	$\overline{\text { OUT14 }}$	0	A sink type constant current output pin.
20	2	$\overline{\text { OUT15 }}$	0	A sink type constant current output pin.
21	3	$\overline{\mathrm{OE}}$	1	The constant current output enable signal input pin. During the "H" level, the output will be forced off.
22	4	SOUT	0	The serial data output pin.
23	5	REXT	-	The constant current value setting resistor connection pin.
24	6	$\mathrm{V}_{\text {DD }}$	-	The power supply input pin.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$)

Characteristics	Symbol	Rating *1	Unit
Power supply voltage	$V_{\text {DD }}$	-0.4 to 6.0	V
Output current	Io	55	mA
Logic input voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$ *2	V
Output voltage	V_{O}	-0.3 to 26	V
Operating temperature	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Thermal resistance	Rth(j-a)	$\begin{gathered} 94(\mathrm{AFG}) * 3,120(\mathrm{AFNG}) * 3,80.07(\mathrm{AFNAG} / \mathrm{BFNAG}) \\ \text { When mounted PCB } \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power dissipation	PD*4	$1.32 \text { (AFG) *3, } 1.04 \text { (AFNG) *3, 1.56(AFNAG/BFNAG) }$ When mounted PCB	W

Note1: Voltage is ground referenced.
Note2: However, do not exceed 6V.
Note3: PCB condition $76.2 \times 114.3 \times 1.6 \mathrm{~mm}, \mathrm{Cu} 30 \%$ (SEMI conforming)
Note4: The power dissipation decreases the reciprocal of the saturated thermal resistance (1/Rth(j-a)) for each degree $\left(1^{\circ} \mathrm{C}\right)$ that the ambient temperature is exceeded $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$.

Operating Conditions

DC Items (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Power supply voltage	$V_{\text {DD }}$	-	3.0	-	5.5	V
Output voltage when OFF	$\mathrm{V}_{\mathrm{O}}(\mathrm{ON})$	$\overline{\text { OUTn }}$	0.4	-	4.0	V
High level logic input voltage	V_{IH}	SIN,SCK, $\overline{\text { SLAT }}, \overline{\mathrm{OE}}$	$\begin{aligned} & 0.7 \times \\ & V_{D D} \end{aligned}$	-	VDD	V
Low level logic input voltage	$\mathrm{V}_{\text {IL }}$	SIN,SCK, $\overline{\text { SLAT }}, \overline{\mathrm{OE}}$	GND	-	$\begin{aligned} & 0.3 \times \\ & V_{D D} \end{aligned}$	V
High level SOUT output current	IOH	-	-	-	-1	mA
Low level SOUT output current	l OL	-	-	-	1	mA
Constant current output	lo1	$\overline{\text { OUTn }}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4$ to 1.0 V	1.5	-	35	mA
	$\mathrm{l}_{\mathrm{O} 2}$	$\overline{\mathrm{OUTn}}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4$ to 1.2 V	1.5	-	45	

AC Items (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuits		Test Conditions	Min	Typ.	Max	Unit
Serial data transfer frequency	$\mathrm{f}_{\text {SCK }}$	6		-	-	-	25	MHz
Hold time	thold	6		-	5	-	-	ns
	thold2	6		-	5	-	-	ns
Setup time	tsetup1	6		-	5	-	-	ns
	tsetup2	6		-	5	-	-	ns
Maximum clock rise time	tr_{r}	6	*1		-	-	500	ns
Maximum clock fall time	t_{f}	6	*1		-	-	500	ns

Note1: If the device is connected in a cascade and the tr/ff of the clock waveform increases due to deceleration of the clock waveform, it may not be possible to achieve the timing required for data transfer. Please keep these timing conditions in mind when designing your application.

Electrical Characteristics (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuits	Test Conditions	Min	Typ.	Max	Unit
High level logic output voltage	V_{OH}	1	$\mathrm{IOH}=-1 \mathrm{~mA}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{gathered}$	-	-	V
Low level logic output voltage	V_{OL}	1	$\mathrm{l}_{\mathrm{OL}}=+1 \mathrm{~mA}$	-	-	0.4	V
High level logic input current	$\mathrm{IIH}^{\text {H }}$	2	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \overline{O E}$, SIN, SCK	-	-	1	$\mu \mathrm{A}$
Low level logic input current	IIL	3	$\mathrm{V}_{\text {IN }}=$ GND, $\overline{\text { SLAT }}$, SIN, SCK	-	-	-1	$\mu \mathrm{A}$
Power supply current	IDD1	4	$\begin{aligned} & V_{O}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=\mathrm{OPEN}, \\ & \mathrm{SCK}=\text { "L", } \overline{\mathrm{OE}}=\text { "H" } \end{aligned}$	-	-	1.0	mA
	IDD2	4	$\mathrm{R}_{\text {EXT }}=1.2 \mathrm{k} \Omega$, All output off	-	-	4.0	mA
	IDD3	4	$\mathrm{R}_{\text {EXT }}=1.2 \mathrm{k} \Omega$, All output on	-	-	8.0	mA
Output current	10	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUT0}} \text { to } \overline{\text { OUT15 }} \end{aligned}$	-	14	-	mA
Constant current error(Ch to Ch)	Δ_{0}	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	± 1	± 1.5	\%
Constant current error(IC to IC)	Δ^{O} (IC)	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUT}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	± 1	± 1.5	\%
Output OFF leak current	IOK	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=25 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	-	0.5	$\mu \mathrm{A}$
Constant current power supply voltage regulation	\% $\mathrm{V}_{\text {DD }}$	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	± 1	± 2	\%
Constant current output voltage regulation	\% V_{O}	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \text { to } 3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	± 1	-	\%/V
Pull-up resistor	RUP	3	$\overline{\mathrm{OE}}$	250	500	800	$\mathrm{k} \Omega$
Pull-down resistor	R DOWN	2	$\overline{\text { SLAT }}$	250	500	800	$\mathrm{k} \Omega$

Electrical Characteristics (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuits	Test Conditions	Min	Typ.	Max	Unit
High level logic output voltage	V_{OH}	1	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{gathered}$	-	-	V
Low level logic output voltage	V_{OL}	1	$\mathrm{I}_{\mathrm{OL}}=+1 \mathrm{~mA}$	-	-	0.4	V
High level logic input current	$\mathrm{IIH}^{\text {H }}$	2	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{OE}}, \mathrm{SIN}, \mathrm{SCK}$	-	-	1	$\mu \mathrm{A}$
Low level logic input current	IIL	3	$\mathrm{V}_{\text {IN }}=\mathrm{GND}, \overline{\text { SLAT }}$, SIN, SCK	-	-	-1	$\mu \mathrm{A}$
Power supply current	IDD1	4	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=\mathrm{OPEN}, \\ & \mathrm{SCK}=" \mathrm{~L} ", \overline{\mathrm{OE}}=\text { "H" } \end{aligned}$	-	-	1.0	mA
	IDD2	4	$\mathrm{R}_{\text {EXT }}=1.2 \mathrm{k} \Omega$, All output off	-	-	4.5	mA
	IDD3	4	$\mathrm{R}_{\text {EXT }}=1.2 \mathrm{k} \Omega$, All output on	-	-	8.0	mA
Output current	Io	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	14	-	mA
Constant current error(Ch to Ch)	$\Delta \mathrm{l}_{0}$	5	$\begin{array}{\|l} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\text { OUT15 }} \\ \hline \end{array}$	-	± 1	± 1.5	\%
Constant current error(IC to IC)	$\Delta \mathrm{O}(\mathrm{IC)}$	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \\ & \hline \end{aligned}$	-	± 1	± 1.5	\%
Output OFF leak current	IOK	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=25 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	-	0.5	$\mu \mathrm{A}$
Constant current power supply voltage regulation	\% $\mathrm{V}_{\text {DD }}$	5	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\text { OUT15 }} \\ \hline \end{array}$	-	± 1	± 2	\%
Constant current output voltage regulation	\% V_{O}	5	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \text { to } 3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EXT}}=1.2 \mathrm{k} \Omega, \overline{\mathrm{OUTO}} \text { to } \overline{\mathrm{OUT} 15} \end{aligned}$	-	± 1	-	\%/V
Pull-up resistor	RUP	3	$\overline{\mathrm{OE}}$	250	500	800	$\mathrm{k} \Omega$
Pull-down resistor	R DOWN	2	$\overline{\text { SLAT }}$	250	500	800	$\mathrm{k} \Omega$

Switching Characteristics (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circuits	Test Conditions	Min	Typ.	Max	Unit
Propagation delay time	SCK- $\overline{\text { OUTO }}$	$\mathrm{t}_{\mathrm{pLH} 1}$	6	$\overline{\text { SLAT }}=$ " H ", $\overline{\mathrm{OE}}=$ "L"	-	20	300	ns
	$\overline{\text { SLAT - OUTO }}$	$\mathrm{t}_{\mathrm{pLH}}$	6	$\overline{\mathrm{OE}}=$ "L"	-	20	300	ns
	$\overline{\text { OE - }} \overline{\text { OUTO }}$	tpLH3	6	$\overline{\text { SLAT }}=$ "H"	-	20	300	ns
	SCK-SOUT	$\mathrm{t}_{\mathrm{pLH}}$	6	$\mathrm{CL}=10.5 \mathrm{pF}$	10	20	35	ns
	SCK- $\overline{\text { OUTO }}$	$\mathrm{t}_{\mathrm{pHL}}$	6	$\overline{\text { SLAT }}=$ " H ", $\overline{\mathrm{OE}}=$ "L"	-	30	340	ns
	$\overline{\text { SLAT - } \overline{O U T O}}$	$\mathrm{t}_{\mathrm{pHL}} 2$	6	$\overline{\mathrm{OE}}=$ "L"	-	70	340	ns
	$\overline{\text { OE - } \overline{\text { OUTO }} \text { - }{ }^{\text {a }} \text { (}}$	$\mathrm{t}_{\mathrm{pHL}} 3$	6	$\overline{\text { SLAT }}=$ "H"	-	70	340	ns
	SCK-SOUT	$\mathrm{t}_{\mathrm{pHL}}$	6	$\mathrm{CL}=10.5 \mathrm{pF}$	10	20	35	ns
Output rise time		t_{or}	6	10 to 90\% of voltage waveform	-	20	90	ns
Output fall time		$\mathrm{t}_{\text {of }}$	6	90 to 10% of voltage waveform	-	25	180	ns
Enable pulse width		$\mathrm{t}_{\mathrm{wOE}}(\mathrm{L})$	6	$\overline{\mathrm{OE}}=" \mathrm{~L}{ }^{\text {*1 }}$	100	-	-	ns
Clock pulse width		$\mathrm{t}_{\mathrm{wSCK}}$	6	SCK = "H" or "L"	20	-	-	ns
Latch pulse width		$\mathrm{t}_{\text {wSLAT }}$	6	$\overline{\text { SLAT }}=$ "H"	20	-	-	ns

Note1: At the condition of $\mathrm{t}_{\mathrm{wOE}(\mathrm{H})}=250$ ns or more

Switching Characteristics (Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=\mathbf{5 . 0 V}, \mathrm{T}_{\mathrm{a}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circuits	Test Conditions	Min	Typ.	Max	Unit
Propagation delay time	SCK- $\overline{\text { OUTO }}$	$\mathrm{t}_{\mathrm{pLH} 1}$	6	$\overline{\text { SLAT }}=$ " H ", $\overline{\mathrm{OE}}=$ "L"	-	20	300	ns
	$\overline{\text { SLAT - }}$ OUTO	tpLH^{2}	6	$\overline{\mathrm{OE}}=$ "L"	-	20	300	ns
	$\overline{\text { OE - OUTO }}$	tpLH	6	$\overline{\text { SLAT }}=$ "H"	-	20	30	ns
	SCK-SOUT	$\mathrm{t}_{\mathrm{pLH}}$	6	$\mathrm{CL}=10.5 \mathrm{pF}$	10	20	35	ns
	SCK- $\overline{\text { OUTO }}$	$\mathrm{t}_{\mathrm{pHL}}$	6	$\overline{\text { SLAT }}=$ " ${ }^{\prime \prime}$ ", $\overline{\mathrm{OE}}=$ "L"	-	30	340	ns
	$\overline{\text { SLAT - } \overline{O U T O}}$	$\mathrm{t}_{\mathrm{pHL}} 2$	6	$\overline{\mathrm{OE}}=$ "L"	-	70	340	ns
	$\overline{\text { OE }}$ - $\overline{\text { OUTO }}$	$\mathrm{t}_{\mathrm{pHL}}$	6	$\overline{\text { SLAT }}=$ " H "	-	70	340	ns
	SCK-SOUT	$\mathrm{t}_{\mathrm{pHL}}$	6	CL=10.5 pF	10	20	35	ns
Output rise time		tor	6	10 to 90% of voltage waveform	-	20	90	ns
Output fall time		$\mathrm{t}_{\text {of }}$	6	90 to 10% of voltage waveform	-	25	180	ns
Enable pulse width		$\mathrm{t}_{\mathrm{WOE}}(\mathrm{L})$	6	$\overline{\mathrm{OE}}=$ "L" *1	100	-	-	ns
Clock pulse width		$\mathrm{t}_{\text {wSCK }}$	6	SCK = "H" or "L"	20	-	-	ns
Latch pulse width		$\mathrm{t}_{\text {wSLAT }}$	6	$\overline{\text { SLAT }}=$ "H"	20	-	-	ns

Note1: At the condition of $\mathrm{t}_{\mathrm{wOE}}(\mathrm{H})=250 \mathrm{~ns}$ or more

I/O Equivalent Circuits

1. SCK, SIN

2. $\overline{O E}$

3. SOUT

4. $\overline{\mathrm{OUTO}}$ to $\overline{\mathrm{OUT} 15}$

Test Circuits

Test Circuit1: High level logic input voltage / Low level logic input voltage

Test Circuit2: High level logic input current / Pull-down resistor

Test Circuit3: Low level logic input current / Pull-up resistor

[^0]Test Circuit4: Power supply current

Test Circuit5: Constant current output / Output OFF leak current / Constant current error
Constant current power supply voltage regulation / Constant current output voltage regulation

Test Circuit6: Switching Characteristics

Timing Waveforms

1. SCK, SIN, SOUT

2. SCK, SIN, $\overline{\text { SLAT }}, \overline{O E}, \overline{O U T O}$

3. $\overline{O E}, \overline{O U T O}$

Reference data

*This data is provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

Output Current - REXT Resistor

Reference data

*This data is provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

Output Current - Duty (LED turn-on rate)

Power dissipation - Ta

Package Dimensions

SSOP24-P-300-1.00B

Unit : mm

Weight: 0.29 g (typ.)

Package Dimensions

Weight: 0.14 g (typ.)

Package Dimensions
SSOP24-P-150-0.64
Unit: Inch

Weight: 0.14 g (typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.
Toshiba does not grant any license to any industrial property rights by providing these examples of application circuits.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations
 Notes on handling of ICs

[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
[2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
[3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
[4] Do not insert devices in the wrong orientation or incorrectly.
Make sure that the positive and negative terminals of power supplies are connected properly.
Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
[5] Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator.
If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

(1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T_{J}) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

About solderability, following conditions were confirmed

- Solderability
(1) Use of $\mathrm{Sn}-37 \mathrm{~Pb}$ solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- The products described in this document are subject to foreign exchange and foreign trade control laws.

[^0]: $V_{D D}=3.3 \mathrm{~V}, 5.0 \mathrm{~V}$

